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Introduction 

          Coronaviruses (CoVs) are classified under the family Coronaviridae of the order 

Nidovirales (Plant et al., 2013). The order Nidovirales is derived from the Latin word nidus, 

meaning nest, as all the viruses in this order produce a 3' co-terminal nested set of 

subgenomic mRNAs during replication (de Vries et al., 1997).
 
The name “CoV” is derived 

from the Latin word “corona”, meaning crown or halo, and refers to the characteristic 

spikes on virions, that are shown by electron microscopy to be a royal crown or of the solar 

corona. Generally each CoV infects specific hosts in a species-specific manner, and 

infections can be either acute or persistent. Infections are transmitted commonly via 

respiratory and fecal-oral routes (Masters, 2006). However, two human CoVs recently 

emerged worldwide, severe acute respiratory syndrome CoV (SARS-CoV) and Middle East 

respiratory syndrome CoV (MERS-CoV), come from wild animals, revealing the host 

exchange during the infection (Cong and Ren, 2014).  

          CoVs were first identified in the 1960s from the nasal cavities of patients suffering 

from common cold (Geller et al., 2012). These viruses were electron microscopically 

shown to have characteristic crown-like spikes, after which the virus was named CoV. 

Thereafter, viruses with similar spikes were found in domestic animals, chickens and 

laboratory animals and those viruses caused serious diseases in host animals (Almeida and 

Tyrrell, 1967). Since there was no highly pathogenic human CoV until the discovery of 

highly pathogenic human CoV: SARS-CoV (Drosten et al., 2009; Ksiazek et al., 2003; 

Peiris et al., 2003) and MERS-CoV (Al-Hazmi, 2016), animal CoVs were major target of 

the research. However, the emergency of those viruses has huge impact in human society 

and medicine and they are currently the most studied CoVs.        

https://en.wikipedia.org/wiki/Solar_corona
https://en.wikipedia.org/wiki/Solar_corona
https://en.wikipedia.org/wiki/SARS_coronavirus
https://en.wikipedia.org/wiki/SARS_coronavirus
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           The Coronaviridae family consists of two subfamily- coronavirinae and torovirinae. 

The coronavirinae subfamily is divided into four genera: Alpha, Beta, Gamma and Delta 

(Table-I). On the other hand, the torovirinae subfamily contains two genera, Bafinivirus 

and Torovirus (ToV) (Table-I) (Adams et al., 2016; Cong and Ren, 2014; Irigoyen et al., 

2016; McBride et al., 2014).           

         Coronaviridae are a family of nonsegmented, enveloped, positive sense RNA viruses 

(McBride et al., 2014). The one of important features of this viral family is genome size. 

CoVs have the largest genomes among all RNA viruses, including those viruses with 

segmented genomes (Masters, 2006). The viral genome size is 26–32 kilo bases (kb) in 

length (Lehmann et al., 2015). Virions have average diameters of 80–120 nanometer (nm), 

but extreme sizes as small as 50 nm and as large as 200 nm (McIntosh, 1974). The virions 

are roughly spherical and have pleomorphic morphology (Masters, 2006).  

          Two-thirds of the CoVs genome found within the 5'-genomic region contains open-

reading frame 1a (ORF) and ORF 1b. These ORF1a and ORF1b encode RNA-dependent 

RNA polymerase, helicase, and other nonstructural protein (nsp1-16) that are necessary for 

either efficient replication or pathogenesis (Fehr and Perlman, 2015; Masters, 2006). Genes 

for the structural proteins are encoded in the remaining one third of the genome in a fixed 

order: S-E-M-N (McBride et al., 2014; Tanaka et al., 2013). Proteins that contribute to the 

overall structure of all CoVs are the spike (S), envelope (E), integral membrane (M) 

and nucleocapsid (N) proteins (Snijder et al., 2003). The former three  proteins exist on the 

viral envelope (Fig. I) (Brian and Baric, 2005; Fehr and Perlman, 2015; Masters, 2006). 

The S glycoprotein that constitutes the spike on the virion (Masters, 2006) facilitates 

receptor attachment and viral-entry into cells (Collins et al., 1982). The M glycoprotein is 

https://en.wikipedia.org/wiki/Nucleocapsid


5 

 

the most abundant part in coronavirus virions (Sturman, 1977; Sturman et al., 1980) and 

determines the site of virus assembly. The E protein is a small polypeptide, which is only a 

minor part of virions. Because of its tiny size and limited quantity, E was identified as a 

virion component much later than were the other structural proteins. The N protein is the 

protein component of the helical nucleocapsid and binds the genomic RNA in a beads-on-a-

string fashion (Masters, 2006). Some CoVs encode a second set of projections, 5–10 nm 

long (Guy et al., 2000; Patel et al., 1982). These shorter structures are known to be 

composed of the hemagglutinin-esterase (HE) protein, which is the fourth constituent of the 

membrane envelope in some CoVs (Masters, 2006). HE protein forms a second set of small 

spikes that appear among the tall S protein spikes. The HE protein also has an 

acetylesterase activity (Cornelissen et al., 1997). 

            Replication of CoVs starts with binding to its specific receptor on host cell surface 

and then entry to the host cells, which take place from plasma membrane or endosomal 

membrane. After entering into the cell, the virion is uncoated and the nucleocapsid is 

released into the cytoplasm of host cells, where the viral genome becomes available for 

translation. Since CoVs are positive stranded RNA viruses, the genome also serves as the 

first mRNA of infection, and is translated into the enormous replicase polyprotein. Then the 

replicase utilizes the genome as the template for the synthesis of new copies of negative-

stranded RNA complementary to the genomic RNA and from the negative-stranded RNA 

subgenomic mRNAs are transcribed (Plant et al., 2013). During replication CoVs 

synthesize a nested set of six to ten subgenomic mRNAs in infected cells (Hussain et al., 

2005) that have a common 3' end. These subgenomic mRNAs also contain a common 

leader sequence derived from the 5' end of the genome. Synthesis of each subgenomic 
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mRNA involves a discontinuous step by which the 3' body sequence is fused to the 

genomic 5' leader sequence (Sawicki et al., 2001). These subgenomic mRNAs are 

translated to viral structural proteins or nonstructural accessory proteins (Cowley et al., 

2010; Kopecky-Bromberg et al., 2007). The membrane-bound structural proteins which 

form the viral envelope: M, S and E protein are inserted into the ER membrane, from where 

they transit to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC). 

Nucleocapsids are developed from the encapsidation of progeny genomes by N protein. 

These coalesce of nucleocapsid with the membrane-bound proteins, develop virions by 

budding into the ERGIC. Finally, progeny viruses are released from infected cells via 

exosomal pathway.  

          CoVs are distributed broadly among mammals and birds, causing mainly respiratory 

or enteric diseases but also including hepatic, renal and neuronal infection (Fielding, 2011; 

Graham et al., 2013; Masters, 2006). Six different CoVs infect humans: alpha (229E and 

NL63) and beta (OC43, SARS-CoV, MERS-CoV and HKUI1). Among them SARS-CoV 

and MERS-CoV are the most publicized, although these two are of animal origin (Cong 

and Ren, 2014). SARS-CoV was first identified in Asia in 2003. Within the next few 

months, the infections spread to ca. 30 countries in North America, South America, Europe 

and Asia. In the first outbreak 774 patients has died (Azhar et al., 2014; Drosten et al., 

2009; Ksiazek et al., 2003; Peiris et al., 2003). MERS-CoV is the newly identified CoV that 

has emerged in the Middle East in 2012. In January 2016, WHO has reported 1638 MERS-

CoV positive human cases, including 587 deaths (36%) (Al-Hazmi, 2016).  

            CoVs are also responsible for a wide range of diseases in farm animals and pet 

animals, some of which can be serious and are a threat to the farming industry (Fehr and 
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Perlman, 2015). Economically important CoVs of farm animals include porcine epidemic 

diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), bovine torovirus 

(BToV) and bovine coronavirus (BCoV), which result in enteric infection causing 

diarrhea in young animals. Feline coronavirus (FCoV) has two forms; feline enteric 

coronavirus (FECV) is responsible for minor clinical signs, but spontaneous mutation of 

this virus may result in feline infectious peritonitis virus (FIPV) (Rottier et al., 2005), 

which causes high mortality. Similarly, there are two types of CoV that infect ferrets 

(Murray et al., 2010). There are two types of canine coronavirus (CCoV), one causes mild 

gastrointestinal disease and another one to cause respiratory disease (Cong and Ren, 2014). 

Mouse hepatitis virus (MHV) is responsible for an epidemic murine illness with high 

mortality of suckling mice and immunocompromised mice (Weiss and Navas-martin, 2005).
 

In chickens, the infectious bronchitis virus (IBV) infects not only the respiratory tract but 

also the uro-genital tract. This virus can spread to different organs of the chicken (Bande et 

al., 2015)   

A huge PEDV outbreak occurred in early 2013 in the United States (US) for the 

first time that caused high morbidity and mortality of piglets, affecting US pig production, 

and spread further to Canada and Mexico (Lee, 2015). In October 2013, devastating 

outbreak of porcine epidemic diarrhea (PED) occurred in Japan (Masuda et al., 2015) after 

a period of 7 years absence of outbreak. PEDV new isolates from this outbreak are geneti-

cally related to the PEDV isolates from China and USA in 2013 (Huang et al., 2013). 

PEDV has the ability to infect pigs of any age, from neonates to sows or boars; however, 

the severity of PED in pigs differs according to age of pigs (Shibata et al., 2000). Most 

importantly, PEDV infection in neonatal pigs generally causes death from watery diarrhea 

https://en.wikipedia.org/wiki/Diarrhea
https://en.wikipedia.org/wiki/Feline_infectious_peritonitis
https://en.wikipedia.org/wiki/Murinae
https://en.wikipedia.org/wiki/Infectious_bronchitis_virus


8 

 

and dehydration. Additionally, PEDV may cause various other clinical signs, including 

vomiting, anorexia, dehydration, and weight loss (Pensaert and de Bouck, 1978; Song et al., 

2015).  

Another important virus of Coronaviridae family that causes enteric diseases in 

domestic animal is torovirus (ToV). ToV is classified in the subfamily Torovirinae in the 

family Coronaviridae. This virus primarily infects vertebrates (Shimabukuro et al., 2013; 

Snijder and Horzinek, 1993; Woode et al., 1982). There are four different species of ToV: 

equine, bovine, porcine, and human (Ali and Reynolds, 2000; Beards et al., 1986; 

Duckmanton et al., 1998, 1997; Kroneman et al., 1998)
 

BToV are responsible for mild to moderate diarrhea in calves (Koopmans and 

Horzinek, 1994). In cattle, the disease causes diarrhea and systemic signs such 

as pyrexia, lethargy and anorexia. In calves, it may cause neurological signs and lead to 

death. It infects villous and crypt enterocytes of the mid-jejunum, ileum, cecum and colon, 

inducing villous atrophy and necrosis of the crypts in calves (Koopmans and Horzinek, 

1994; Woode et al., 1982). Respiratory infections caused by BToVs have also been 

reported (Hoet et al., 2003). 

         In the present study, new strains of PEDV were isolated from small intestine of 

piglets sacrificed in several prefectures in Japan during new outbreak of PED in 2014. 

Phylogenetic analysis of those viruses was done on the basis of S protein by using the 

distance-based neighbor-joining method. The author also compared the antigenicity of new 

isolates with that of Japanese vaccine strain by neutralization test. On the other hand, HE 

positive (HE+) and HE negative (HE-) strains of BToV were cloned from an isolate from a 

https://en.wikipedia.org/wiki/Torovirinae
https://en.wikipedia.org/wiki/Coronaviridae
https://en.wikipedia.org/wiki/Vertebrates
https://en.wikipedia.org/wiki/Diarrhoea
https://en.wikipedia.org/wiki/Pyrexia
https://en.wikipedia.org/wiki/Lethargy
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diarrheic cattle in Niigata prefecture. The author explored the biological function of the HE 

protein and found that HE acts as an interferon (IFN)-α antagonist in innate immunity. 

            The present thesis consists of three chapters. First chapter describes the isolation of 

new PEDVs from the outbreak of 2014 in Japan as well as phylogenetic and antigenic 

characterization of those PEDV. Second chapter shows the isolation of HE+ and HE- 

BToVs as well as the comparison of those two viruses in terms of their biological features. 

Third chapter focused on the anti-IFN activity of the HE protein of BToV.  
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Table I: Classification of Coronaviruses (CoVs) 

Order: Nidovirales 

Family: Coronaviridae 

Subfamily: Coronavirinae Subfamily: Torovirinae 

Genus:  

 Alphacoronavirus 

 

Species: 

Human CoV 229E, human CoV NL63, 

PEDV, miniopterus bat CoV 1, miniopterus 

bat CoV HKU8 

   

Genus:  

 Torovirus 

 

Species: 

BToV, equine ToV, porcine ToV, 

human ToV 

Genus: 

 Bafinivirus 

 

Species: 

White bream virus Genus: 

 Betacoronavirus 

 

Species: 

 SARS-CoV, MERS-CoV, human CoV 

HKU1, murine CoV, pipistrellus bat CoV 

HKU5, rousettus bat CoV HKU9, tylonycteris 

bat CoV HKU4, human CoV OC43 

Genus: 

 Gammacoronavirus  

 

Species: 

Infectious bronchitis virus, avian CoV, duck 

CoV, beluga whale CoV SW1  

Genus: 

 Deltacoronavirus 

 

Species: 

Bulbul CoV HKU11, thrush CoV HKU12, 

munia CoV HKU13   

https://en.wikipedia.org/wiki/MERS-CoV
https://en.wikipedia.org/wiki/Human_coronavirus_HKU1
https://en.wikipedia.org/wiki/Human_coronavirus_HKU1
https://en.wikipedia.org/w/index.php?title=Murine_coronavirus&action=edit&redlink=1
https://en.wikipedia.org/wiki/Pipistrellus_Bat_coronavirus_HKU5
https://en.wikipedia.org/wiki/Pipistrellus_Bat_coronavirus_HKU5
https://en.wikipedia.org/wiki/Rousettus_Bat_coronavirus_HKU9
https://en.wikipedia.org/wiki/Tylonycteris_Bat_coronavirus_HKU4
https://en.wikipedia.org/wiki/Tylonycteris_Bat_coronavirus_HKU4
https://en.wikipedia.org/wiki/Human_coronavirus_OC43
https://en.wikipedia.org/wiki/Infectious_bronchitis_virus
https://en.wikipedia.org/w/index.php?title=Avian_coronavirus&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Duck_coronavirus&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Duck_coronavirus&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Beluga_whale_coronavirus_SW1&action=edit&redlink=1
https://en.wikipedia.org/wiki/Bulbul_coronavirus_HKU11
https://en.wikipedia.org/w/index.php?title=Thrush_coronavirus_HKU12&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Munia_coronavirus_HKU13&action=edit&redlink=1
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                           Figure I. Morphology of the SARS-CoV (Peiris et al., 2004).  
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Phylogenetic and antigenic characterization of newly isolated PEDV in 

Japan 
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1-1. Introduction 

PEDV is classified into the genus alpha-CoV in the family Coronaviridae of the order 

Nidovirales. It is an enveloped virus with a single-stranded, positive-sense genomic RNA 

of ca. 28 kb (Chen et al., 2014; Lee, 2015; Masters, 2006; Oka et al., 2014; Sung et al., 

2015). PEDV infects the epithelial cells lining the small intestine of pigs and causes severe 

diarrhea, resulting in fatal dehydration in piglets (Lee, 2015; Liu et al., 2015; Song and 

Park, 2012).  

         PEDV virion consists of at least seven ORFs in the following order: ORF1a, ORF1b, 

S, ORF3, E, M, and N. The S gene is the most diverse gene (Chen et al., 2013; Oka et al., 

2014). S protein is the largest surface glycoprotein of the virion and involved in viral entry 

into the host cells (Bosch et al., 2003). The full-length S gene is approximately 4.1 kb 

(Chen et al., 2013). In addition, neutralization epitopes have been found in the PEDV S 

protein (30–32). Therefore, the S glycoprotein is very important viral component to study 

the genetic relationships of different PEDV strains and the epidemiological analysis of 

PEDV in the field (Chen et al., 2013; Tian et al., 2013). It has been reported that S gene is 

considered to be an ideal region to determine the antigenic relatedness among different 

PEDV isolates (Chen et al., 2013; Lee et al., 2010).          

PED was initially reported in Europe, and the causative virus, the PEDV CV777 

strain, was first isolated in 1971 in Belgium (Chasey and Cartwright, 1978). Thereafter, 

PED spread to Asian countries, in which viruses were isolated from diseased pigs 

(Takahashi et al., 1983). In the US, PEDV was first detected in May 2013 (Stevenson et al., 

2013), and a huge outbreak of PED occurred in the US thereafter. By the end of April 2014, 

the outbreak had spread to 30 US states, causing the death of ca. 8 million pigs, most of 

https://en.wikipedia.org/wiki/Pig
https://en.wikipedia.org/wiki/Diarrhea
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which were piglets. The infection subsequently spread throughout North America, 

including Canada and Mexico (Vlasova et al., 2014). In October 2013, an outbreak of PED 

occurred in Japan after a 7-year absence. PED has affected more than 1,000 farms 

throughout Japan, causing the deaths of ~440,000 piglets (Masuda et al., 2015), despite 

vaccination of pig herds nationwide.  

Vaccination of sows is the principal strategy to control and eradicate epidemic or 

endemic PED outbreaks. Even though PED first emerged in Europe, PED outbreaks have 

been become more serious and drastic in Asian countries, and therefore different kinds of 

PEDV vaccines have been developed in Asia. In China, CV777-attenuated or -inactivated 

vaccines have been regularly used against PED. Inactivated, bivalent TGEV and PEDV 

vaccine (Ma et al., 1995) and attenuated, bivalent TGEV and PEDV vaccine (Tong et al., 

1999) are also used in Chinese pig population. Two South Korean virulent PEDV strains 

were also attenuated by the cell-culture adaptation and used as live or killed vaccine by 

either intramuscular (IM) or intraoral inoculation (Kweon et al., 1999; Lee, 2015). In Japan 

two different vaccines are available, both of which belong to group I virus. These vaccines 

were made by attenuation of the virulence by serial passages through Vero cells (Lee, 2015; 

Sato et al., 2011).  

  The present study was performed to determine why the large outbreak occurred in 

Japan, where PED vaccination has been performed. We first isolated two PEDV strains 

from infected piglet intestines, which were designated Tochigi (LC144542) and Nagasaki 

(LC144543). These viruses were found to be phylogenetically similar to newly isolated US 

strains (group II) and different from CV777 and other strains classified in group I. A 

neutralization test (NT) showed no significant difference in antigenicity between our new 
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isolates and a group I strain using a number of sera samples collected from pigs vaccinated 

with group I virus. Our results suggest that the PED outbreak in Japan was not caused by 

inefficient vaccination, but by the high virulence of newly circulating viruses. 

 

1-2. Materials and Methods  

Collection of fecal and intestinal samples from pig farm  

We obtained specimens (feces and small intestines) from piglets infected by PEDV in 

2014 from several prefectures in Japan and used 14 specimens PCR-positive for the PEDV 

N and S genes (data not shown). Seven samples were diarrheic feces, and the other seven 

were small intestines from piglets.  

 

Preparation of inoculum   

The transparent parts of the small intestine, indicating infection with PEDV, 10-15 

cm in length, were filled with 5-10 ml phosphate-buffered saline (PBS), pH 7.2, and 

massaged gently to detach infected epithelial cells. PBS was collected, homogenized using 

a glass homogenizer and centrifuged at 5,000 rpm for 10 min at 4C to remove cell debris. 

The supernatants were filtered through a 450 nm pore-size filter (Minisart
®
, Sartorius 

Stedim Biotech GmbH, Goettingen, Germany) to remove contaminating bacteria. Diarrheic 

feces were diluted 10-fold with PBS and treated in the same manner as the intestines, 

described above.  
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Virus isolation and propagation  

To isolate the virus, we used Vero-KY5 cells (Vero) (Suzuki et al., 2015), which were 

kindly provided by the National Institute of Animal Health (NIAH), Japan.  Vero cells were 

maintained in Dulbecco’s modified Eagle’s medium (DMEM, Sigma-Aldrich, St. Louis, 

MO, USA) supplemented with 10% heat-inactivated fetal calf serum (FCS, Sigma-Aldrich, 

St. Louis, MO, USA), penicillin (100 IU/ml), and streptomycin (100 µg/ml) and 0.3% 

tryptose phosphate broth (TPB, Difco, Detroit, MI, USA). Purified suspensions were 

inoculated onto Vero cells prepared in 24-well plates by spinoculation, as described 

previously (Watanabe et al., 2006). Briefly, Vero cells seeded at a concentration of 2 × 10
5
 

per well in a 24-well culture plate (Falcon, Franklin Lakes, NJ, USA) were inoculated with 

50 µl filtered samples and 400 µl DMEM per well. The plates were centrifuged at 3,000 

rpm for 1 h at 4C and then at 3,000 rpm for 1 h at 24C. Then, cells were incubated with 

0.5 ml DMEM supplemented with 5% TPB and trypsin (10 µg/ml), and cytopathic effects 

(CPEs) were monitored during incubation at 37C for 2–4 days. After incubation, when 

cytopathic effect (CPE) was appeared (~ 4 days), cells and supernatant was collected. The 

cell suspension was sonicated in an ice-cold bath for 5 minutes. This suspension was used 

for further propagation or stored at -80°C. We also tried to isolate PEDV by conventional 

method, i.e., we inoculated specimens onto Vero cells and let the virus adsorb cells for 1 

hour at 37C and cultured the inoculated cells for 4-5 days in the presence of trypsin. 

 

Immunofluorescence assay (IFA) for the detection of PEDV antigens in Vero cells 

 PEDV-infected Vero cells in 24-well plates were fixed with acetone/methanol (50:50, 

v/v) at room temperature for 5 min, and then the fixed cells were washed with PBS. Fixed 
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cells were inoculated with 100 times diluted anti-PEDV serum and 100 times diluted 

fluorescence isothiocyanate (FITC)-conjugated goat anti-swine IgG-FITC (Santa Cruz 

Biotechnology, Inc., CA, USA) at room temperature for 50 minutes each as first and second 

antibodies, respectively. After inoculation, cells were washed with PBS and then the plates 

were examined using a fluorescence microscope. 

 

Extraction of RNA and RT-PCR  

The initial homogenate of the specimens, from which the virus was isolated 

successfully, were used to isolate viral RNA using an RNA isolation kit (Direct-Zol
TM

 

RNA Miniprep, Zymo Research, CA, USA). The cDNA was prepared from the eluted 

RNAs and PCR was carried out with PrimeScript II 1
st
 strand cDNA Synthesis kit and Ex 

Taq (Takara Bio Inc., Shiga, Japan). From the cDNA, three fragments covering the entire S 

gene were amplified using primers F1 and R1, F2 and R2 as well as F3 and R3 (Table 1-1). 

The reaction was prepared according to the manufacturer’s instructions. The conditions of 

PCR were as follows: 98
o
C for 1 min, 35 cycles of denaturation at 98

o
 C for 10 sec, 

annealing at 54
o
C for 30 sec and extension at 72

o 
C for 1 min, followed by a final cycle of 

extension at 72
o 
C for 7 min. For each reaction, ddH2O was used as a negative control. PCR 

products were detected by electrophoresis on a 1.0% agarose gel with 1-kb plus DNA 

ladder (Invitrogen, CA, USA) as a marker.   

 

Sequence analysis  

The PCR products were purified using a DNA purification kit (NucleoSpin
®
 Gel 

and PCR Clean-up kit MACHEREY-NAGEL, Düren, Germany) and then sequenced using 
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the primers shown in Table 1-1. The purified DNA was quantified by the use of a Qubit 2.0 

spectrophotometer (Life Technologies, Carlsbad, CA) to calculate the concentrations. 

Purified DNA corresponding to the PEDV “S” genes were directly sequenced by Eurofins 

Genomics (Tokyo, Japan) with the BigDye
®
 Terminator version 3.1 cycle sequencing kit 

and an Applied Biosystems 3730×l DNA analyzer (Applied Biosystems Inc., CA, USA). 

Nucleotide and amino acid (aa) sequences were analyzed with GENETYX
® 

Mac software, 

version 9 (Genetyx Corporation, Tokyo, Japan). The aa sequences corresponding to the S 

protein of PEDV were aligned by using Clustal W parameters of MEGA6.06 

(www.megasoftware.net) software programs. For the analysis of sequence relationships, 

PEDV isolates, which have been detected in pig from other countries, were used as 

reference.  

 

Phylogenetic analysis  

Phylogenetic analysis was performed using the aa sequences of PEDV isolates from 

this study as well as globally endemic PEDV strains available in GenBank based on the full 

length S protein. The trees were constructed using the distance-based neighbor-joining 

method of MEGA6.06 software. Bootstrap analysis was carried out on 1,000 replicate data 

sets. 

 

Virus neutralization (VN) test  

Two types of PEDV antisera were used. One type comprised 18 sera collected from 

herds of pigs that were vaccinated but not recently infected by PEDV, and the other 

comprised 17 sera from herds of pigs that were vaccinated and infected with a new PEDV 
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strain. Two hundred µl of serum were serially diluted in twofold steps with DMEM and 

then mixed with an equal volume of viral suspension containing 100 TCID50/100 µl and 

incubated at 37C for 60 min. Then, 50 l of each dilution were inoculated into each well 

(4 wells per dilution) of a 96-well plate containing confluent Vero cells and incubated at 

37C for 1 h. Then, the mixture was removed, and cells were washed twice with DMEM 

and, finally, incubated at 37C with 50 µl DMEM containing 5% tryptose phosphate broth 

(TPB) and trypsin (10µg/ml). Neutralization antibody titers were expressed as the 

reciprocal of the highest serum dilution that inhibited syncytium formation in at least two 

of four wells.  

 

1-3. Results 

Virus isolation and characterization  

Virus isolation was performed on 7 intestinal homogenates and 7 fecal samples on 

Vero cells. Among those samples, two PEDVs were isolated by spinoculation but not by 

conventional method, one from Tochigi and the other from Nagasaki. Both viruses 

produced syncytia in Vero cells, although the syncytia were smaller than those generated by 

the vaccine type MK strain, which is adapted to Vero cells (Kusanagi et al., 1992) (Fig. 1-

1a-c). Typical CPE was characterized by cell fusion, syncytium formation, and eventual 

cell detachment (Fig. 1-1). Syncytial cells contained viral-specific antigen, as revealed by 

immunofluorescence (Fig. 1-1e-g). Attempts at virus isolation from the remaining samples 

were unsuccessful. Cytotoxicity was observed in cells inoculated with several intestine 

samples and many of the fecal samples.  
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Sequence comparisons with other PEDV strains  

An aa alignment of the S protein of the two novel isolates, MK and three US PEDV 

strains (MN-KF468752, IA1-KF468753, and IA2-KF468754), is shown in Fig. 1-2. All of 

the US strains and Nagasaki and Tochigi were closely related genetically (99.42–99.97% aa 

identity) and differed from each other by 1 to 8 aa throughout the entire S protein. However, 

the new isolates and the US strains were genetically different from the vaccine type MK 

strain, ranging from 92.84–93.15% similarity (95-99 aa differences between MK versus 

Tochigi, Nagasaki and the other US strain). Alignment of the aa sequence of those strains 

identified two regions of aa deletions in the MK strain (aa 59 to 62 and 140) compared with 

the other strains. There was also one region of aa insertion in MK strain (aa 160 and 161) 

compared with the other strains (Fig. 1-2).  

 

Phylogenetic analysis of PEDV  

A total of 45 PEDV viruses (2 isolated in this study, 3 US strains, the MK strain, 5 S-

INDEL PEDV strains and 34 other globally endemic PEDV strains) were used for 

phylogenetic analysis based on the S protein (Fig. 1-3), which demonstrated that the new 

Japanese isolates were closely related to the new US isolates. Forty five PEDV strains 

clustered into group I or II. The above-mentioned five strains, but not the MK strain and 

seven Taiwan PEDV isolates as well as 5 S-INDEL PEDV strains, were clustered within 

group II together with 13 strains detected in China from 2011 to 2012. On the other hand, 

the European CV777-based vaccine strain, MK strain, Korean DR13 strain, and JS2008 

were clustered into group I (Fig. 1-3). These results indicated that the PEDV currently 
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circulating in Japan is classified into group II, as are US isolates, but in contrast to viruses 

previously isolated in Japan, which are classified in group I (Fig. 1-3). These data are in 

agreement with previous reports (Masuda et al., 2015; Suzuki et al., 2015) that the currently 

prevalent PEDV in Japan is similar to US isolates (group II), but different from Japanese 

vaccine type viruses (group I). 

 

Neutralization titer (NT) of different PEDV strains  

The antigenic properties of the new isolates with those of the vaccine-type MK strain 

by NT were examined. The MK strain induces syncytium formation in the presence of 

trypsin (Kusanagi et al., 1992; Shirato et al., 2010), as did the new isolates Tochigi and 

Nagasaki, while the vaccine strain commercially available in Japan induces cell rounding 

and detachment without trypsin treatment. We therefore used the MK strain rather than the 

vaccine strain to perform NT, because the MK, Tochigi and Nagasaki strains can be 

examined under identical conditions. Moreover, there was no antigenic difference between 

Tochigi and Nagasaki in NT (data not shown). 

As shown in Fig. 1-4a, all sera from pigs vaccinated but not infected by the new 

PEDV strain, namely pig farms vaccinated without recent PED incidence, showed almost 

identical neutralization titers against the MK strain and the new isolate. In some cases, the 

titer was twofold higher for group I virus compared with group II virus. These data indicate 

no significant difference in the antigenicity of viruses in terms of neutralization activity. A 

twofold difference in titer between group I and II viruses has also been reported by others 

(Wang et al., 2016). Similar results were obtained using sera from pigs vaccinated and 

infected with the new PEDV strain (Fig. 1-4b). No pig serum showed a higher titer to the 
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new isolates than to MK, suggesting that those pigs were not infected even if the farm was 

affected by the new PEDV strain. Alternatively, it could indicate that antiserum against 

group I vaccine also protected against infection by group II viruses, and thus no antibodies 

were elicited by group II viruses. Collectively, these data indicated that neutralizing 

antigenicity does not differ between MK (group I) and the new isolates (group II). This NT 

showed for the first time that group I and II viruses have similar neutralizing antigenicity 

using a number of sera from individual pigs vaccinated with group I virus. 

 

1-4. Discussion 

In the present study, we isolated two new PEDVs from piglets sacrificed during the 

PED outbreak in Japan. Although we firstly have tried to isolate new PEDV from more 

than 10 samples by conventional method, we failed isolation. Then we applied 

spinoculation and successfully isolated 2 viruses from 7 intestinal specimens but not from 7 

feces, though isolation was not successful by conventional method. Feces were cytotoxic in 

spinoculation and conventional isolation. These results show that spinoculation is more 

efficient for isolation of PEDV from specimens than conventional isolation method and 

feces were not appropriate for isolation. Successful isolation of PEDV by spinoculation 

could be attributed to 10-100 fold enhanced attachment of coronaviruses to cells by 

spinoculation as previously reported (Watanabe et al., 2006).  

As anticipated, the viruses that caused the 2013 outbreak in Japan, which started 6 

months after the initial detection of PED in the US, were highly similar to the US isolates 

and to the viruses circulating in China since 2010 (Chen et al., 2014; Huang et al., 2013). 

New cases of PED caused by group II viruses had not been reported prior to the large PED 
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outbreak in September 2013 in Japan (Suzuki et al., 2015). The new PEDV currently 

prevalent in Japan could have originated from countries in which similar viruses are 

prevalent, but its origin and mechanism of spread nationwide are unknown.  

We showed in this study that new Japanese isolates classified in group II do not differ 

antigenically from the group I vaccine type MK strain, as reported for US isolates (Lin et 

al., 2015). This result is not in disagreement with previous reports that CV777 (group I) and 

a new strain isolated in China (group II) differed in antigenicity by twofold (Wang et al., 

2016). These reports are in accordance with the findings that the neutralizing epitopes of 

the S protein of new isolates are highly conserved and similar to those of the CV777 

vaccine strain (Chen et al., 2013; Hao et al., 2014; Sun et al., 2016, 2008). It was also 

reported that S-INDEL PEDV strains may confer protection against more virulent PEDV 

isolates. The positive antisera against the S-INDEL strain neutralized non-S-INDEL types 

of virus (Chen et al., 2016). Moreover, sows inoculated with S-INDEL PEDV infection 

could reduce morbidity, mortality rate, and fecal shedding in newborn piglets challenged 

with a US-virulent PEDV strain (Goede et al., 2015). This is in agreement with our present 

findings.  

 In the US, PED spread rapidly nationwide from the initial case in Ohio, as well as to 

Canada and Mexico. The huge outbreak in the US may have been caused by the fact that no 

pigs were vaccinated. However, the spread of PED was similar in Japan, where pregnant 

sows are usually vaccinated with a virus that elicits production of antibodies that can also 

neutralize PEDVs of other groups. The vaccine currently used in Japan is effective against 

group I viruses, as evidenced by the lack of PED for 7 years in Japan prior to invasion by 

group II viruses. It was reported that the vaccine against group I viruses increased the 
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survival rate of piglets challenged with virulent wild-type PEDV, although it failed to 

reduce morbidity (Lee, 2015). In agreement with this report, our findings showed that 

group II viruses are neutralized by the antibodies elicited by a vaccine comprising a group I 

virus. Collectively, these findings suggest that outbreaks in countries where vaccines are 

available are not due to ineffective vaccination but rather are attributed to another, as-yet-

unknown, cause.  

Newly appearing PEDVs are reported to be more virulent than classic group I strains 

(Liu et al., 2015); infection and disease in piglets resulted from less than 1 infectious unit 

(Liu et al., 2015). This suggests that large outbreaks are due to the high pathogenicity of the 

viruses; escape of even a small number of viruses from antibody neutralization causes 

devastating diseases in piglets. As commercially available vaccines can neutralize new 

viruses and protect piglets via antibodies contained in colostrum and ordinary milk, 

factors—such as sanitation, hygiene and health conditions of lactating sows—must also be 

important for preventing outbreaks of highly pathogenic viruses (Lee, 2015). Moreover, 

PEDV-infected sows failed to endow a full amount of milk with neutralizing antibodies to 

their piglets, which could also have led to the high mortality rate in the present PED 

outbreak (Lee, 2015). 

The large outbreak that occurred recently in the US was due mainly to poor 

biosecurity (Lee, 2015). Namely, the virus was transmitted by movement of contaminated 

vehicles from the farm where the PEDV outbreak occurred to PEDV-free farms (Lowe et 

al., 2014). Also, transmission by contaminated food was suspected (Dee et al., 2014). To 

prevent large outbreaks, a high level of biosecurity and highly effective vaccines are 

required.    
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1-5. Conclusion 

Two different strains of PEDV were isolated from diseased piglets and they were 

classified into group II virus, but antigenically related to group I by neutralization test. To 

prevent infection by highly pathogenic viruses like those shown in this chapter, 

establishment of rigid biosecurity, in which PEDV infection is contained at an early phase, 

is critical. Also, vaccination with group II virus strains could assist to protect pigs from 

large outbreaks of PEDV.  
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Table 1-1: List of primers used for sequencing of S gene of PEDV 

Fragments of S gene  Primer 

name 

Primer sequence (5′– 3′) Position in PEDV genome 

 

 

S1 

F1 gaatggtaagt tgctagtgcg 20562-20582 

R1 cctgagaacact tgagt tggc 22039-22059 

F-4  gggccccactgctaataatg 21035-21054 

R-4 ctcatatgagctgggatggc 21090-21109 

F-5 ggagctgctgtgcagcgtgc 21558-21577 

R-5 ccttcagcaagaatgacagagg 21610-21631 

 

 

 

S2 

F2 c a g g g a a a t t g t c a t c a c c 21818-21836 

R2 ccaccga t gagagacgc a c 23494-23512 

F-6  ggtgccaaccttattgcatc 22209-22228 

R-6  gggcaattactgtcctgtg 22333-22351 

F-7  ggtgagggtatcattaccc 22608-22626 

R-7  ggctaacaactgtccagaatc 22668-22688 

F-8 gcacccacggttactggg 22956-22973 

R-8  gcacaatcaacactaacaggcg 23038-23059 

 

 

S3 

F3 c g c t c t g t g g c a g a t c t a g tc 23403-23423 

R3 c a t t g a g c t c c a a c t c t t g g 24877-24896 

F-9  ccgtacagctgcaacacaac 23791-23810 

R-9 gctgataatctgccggtgatg 23891-23911 

F-10 gttgtgtggtcacctatgtc 24307-24326 

R-10  cgatgtaatctgggattac 24354-24372 
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Figure 1-1: Cytopathic effects and detection of viral antigen by immunofluorescence in 

Vero cells infected with the MK, Tochigi and Nagasaki strains. At 48 h postinfection, 

cytopathic effects were observed by phase-contrast microscopy (a, b, c and d). At the same 

time, PEDV-infected Vero cells were fixed with acetone-methanol, and the presence of 

virus-specific antigen was determined by immunofluorescence assay using anti-PEDV pig 

serum collected from pig vaccinated by group I vaccine but not infected by newly 

appearing PEDV and fluorescence isothiocyanate-conjugated goat anti-swine IgG (Santa 

Cruz Biotechnology, Inc., Dallas, TX, USA) ( e, f, g and h). 
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Figure 1-2: Alignment of the S-protein amino acid sequences of six PEDV strains (Tochigi, 

Nagasaki and MK are described in the text, and MN, IA1 and IA2 are US isolates). Signal 

peptide (SP), deletion (Del), insertion (Ins), neutralizing epitope 1 to 4 (NE-1 to NE-4), 

heptad repeat 1 and 2 (HR-1 and HR-2) and transmembrane domain (TM) are indicated by 

boxes.  
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Figure 1-3: Phylogenetic analysis of the entire amino acid sequence of the S proteins of 

two new PEDV isolates (Tochigi and Nagasaki) and those of 43 previously published 

PEDVs. The trees were constructed using the distance-based neighbor-joining method of 

the MEGA 6.06 software. Bootstrap analysis was carried out on 1,000 replicate datasets, 

and values are indicated adjacent to the branching points. The viruses identified in this 

study are indicated by large asterisks. S-INDEL PEDV strains are indicated by small 

asterisks. The scale represents the number of amino acid substitutions per site. 
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(a)                                                                                                (b) 

 

 

 

 

 

 

 

 

 

Figure 1-4: Neutralizing titers of various pig sera against the new isolates (Tochigi and 

Nagasaki) and the MK vaccine strain. Two types of antisera against PEDV were used. One 

group comprised 18 sera collected from herds of pigs that were vaccinated but not recently 

affected by PEDV (a), and the other group comprised 17 sera from herds of pigs that were 

vaccinated and affected by the new PEDV (b). Sera were collected from different pig 

farms. individual pig serum.  
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Chapter-2 

 

Biological characterization of the HE protein of BToV 
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2-1. Introduction 

ToV is an enveloped virus with a single stranded, positive sense genomic RNA 

approximately 28 kb long and its virion size ranges from 120–140 nm in diameter 

(Cornelissen et al., 1997; Horzinek, 1999; Snijder and Horzinek, 1993). The virion consists 

of the S, M, and HE proteins on the envelope, and the genome is associated with the N 

protein, which is wrapped by the envelope (Draker et al., 2006). The S protein is the largest 

surface glycoprotein of the virion and is thought to be involved in viral entry and 

pathogenesis (Kirisawa et al., 2007; Snijder et al., 1990). Electron microscopy has shown 

that HE consists of projections of approximately 6 nm on the virion surface, which are 

interspersed among spikes of approximately 20 nm composed of the S protein (Bridger et 

al., 1978; Cornelissen et al., 1997; Sugiyama and Amano, 1981). The HE protein of ToV is 

similar to the HE protein of the influenza C virus and was thought be acquired by ToV as a 

result of recombination with the influenza C virus (de Groot, 2006; Luytjes et al., 1988; 

Snijder et al., 1991).
 

The ToV Berne strain was first isolated in Switzerland in 1972 from a horse with 

diarrhea (Weiss et al., 1983). The Breda strain of bovine ToV (BToV) was isolated from a 

calf with diarrhea in Iowa in 1979 (Weiss et al., 1983; Woode et al., 1982) and is endemic 

in cattle herds, with asymptomatic cows possibly acting as reservoirs. Newborn calves 

generally develop clinical symptoms of diarrhea, typically lasting 2–13 days (Koopmans et 

al., 1991, 1990). Only the equine and BToVs have been isolated from cultured cells 

(Kuwabara et al., 2007; Weiss et al., 1983). The other ToVs have only been detected in 

specimens by reverse transcriptase (RT)-polymerase chain reaction (PCR) (Ito et al., 2007; 

Snijder and Horzinek, 1993). However, growth of the Breda strain in cultured cells is poor, 
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and thus, studies of BToV have been limited. Recently, a new cell line, human rectal tumor-

18 (HRT-18) cells, has been shown to be susceptible to BToV, and several different BToVs 

were successfully isolated and maintained with this cell line (Aita et al., 2012; Ito et al., 

2010; Kuwabara et al., 2007; Shimabukuro et al., 2013). 
 

BToV with the full length HE gene was initially isolated from diarrheal feces; 

however, the viruses lost the HE protein as a result of mutation of the HE gene following 

several passages in HRT-18 cells (Aita et al., 2012; Ito et al., 2010). These findings suggest 

that the HE protein is important for replication and pathogenesis in animals, but is not 

essential for replication in cell culture. Furthermore, HE may hinder virus replication in 

cultured cells. 
 

In the present study, we explored the biological activity of the HE protein, using a 

virus with (HE+) and without (HE-) the HE protein, and found that HE suppresses BToV 

infection in cultured cells.  

 

2-2. Materials and Methods 

Cells and viruses 

HRT-18, Human embryonic kidney 293T (HEK 293T), and Vero cells used in the 

present study were maintained in DMEM supplemented with 10% heat-inactivated FCS, 

penicillin (100 IU/ml), and streptomycin (100 µg/ml). HRT-18 cells, which are susceptible 

to BToV (Kuwabara et al., 2007), were used for BToV propagation and infection. The 

Aichi strain (Aita et al., 2012; Ito et al., 2010; Shimabukuro et al., 2013), as well as the 

Niigata-2 (Nig-2), and Niigata-3 (Nig-3) strains, isolated from diarrheal specimens from 

two different cattle in the Niigata prefecture (Aita et al., 2012), were used. Vero cells were 
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used to prepare the Sindbis virus, kindly provided by Dr. Hiroshi Shirasawa (Chiba 

University), which was used for the IFN experiments. The supernatant of Sindbis virus-

infected cells was isolated 36 h post infection (pi), centrifuged at 5,000 rpm for 10 min, and 

stored at -80°C. HEK 293T cells were used for transfection of the HE gene.  

 

Virus isolation by spinoculation 

The Nig-2 and Nig-3 strains of BToV were isolated from diarrheic cattle from two 

different farms of the Niigata prefecture by spinoculation, as previously described 

(Watanabe et al., 2006). Briefly, the diarrheic feces collected from the diseased cow were 

diluted with nine volumes of PBS, pH 7.2 to make a 10% suspension of the specimen and 

the mixture was homogenized with a glass homogenizer. The homogenates were 

centrifuged at 5,000 rpm at 4°C for 30 min, and the supernatant was filtered through a 450 

nm filter. HRT-18 cells, prepared in 24-well plates at a concentration of 2 × 10
5
 cells in 0.5 

mL per well, were incubated for 24 h and inoculated with 50 µL of the 10% fecal 

suspension and 400 µL of DMEM per well. The plates were centrifuged at 3,000 rpm for 2 

h at 4°C. Cells were washed twice with warm DMEM and incubated for 4 d with DMEM at 

37°C; the CPEs were observed. Newly prepared HRT-18 cells in 24-well plates were 

inoculated with the collected supernatant after evaluation of the CPEs. Viruses were 

passaged 15 times. We cloned Nig-3-3 (HE+) after two passages, and Nig-3-8 (HE-) after 

seven passages, in HRT-18 cells by two and three times limited dilution, respectively. We 

also isolated Nig-2-8 after seven passages of Nig-2 in HRT-18 cells. 
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Extraction of RNA and RT-PCR 

Viral RNAs were extracted from the fecal samples and the supernatants of infected 

cells following each passage using Direct-Zol RNA Miniprep according to the 

manufacturer’s instructions. The cDNA was prepared from the eluted RNAs and PCR was 

carried out with PrimeScript II 1
st
 strand cDNA Synthesis kit and Ex Taq. The primers used 

for the amplification of the BToV HE genes by RT-PCR were described previously 

(Shimabukuro et al., 2013). The primers targeting the HE gene of BToV were as follows:  

forward primer, 5’ GATGCTGAGTTTAATATTC 3’
 

and reverse primer, 5’
 

CCTAATAACTACTTAAAC 3’. The reaction was prepared according to the 

manufacturer’s instructions. The PCR conditions were as follows: 35 cycles of denaturation 

at 98°C for 10 sec, annealing at 45°C for 30 sec, extension at 72°C for 90 sec, and a final 

extension at 72°C for 7 min. For each reaction, ddH2O was used as a negative control. PCR 

products were detected by electrophoresis on a 1.0% agarose gel with 1-kb plus DNA 

ladder.  

 

Sequence analysis 

RT-PCR products were purified using a DNA purification kit (NucleoSpin Gel and 

PCR Clean-up kit; Macherey-Nagel, Düren, Germany). The size of the DNA fragments was 

estimated with a marker. The purified PCR products corresponding to the BToV HE genes 

were sequenced by Eurofins Genomics with the BigDye Terminator version 3.1 cycle 

sequencing kit and an Applied Biosystems 3730 × l DNA analyzer. For sequence similarity 

analysis, the BToV Aichi strain (Aita et al., 2012) was used as a reference. The accession 
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numbers of the HE gene of Nig-2, Nig-3 (HE+), and Nig-3 (HE-) are AB661457, 

AB661458, and AB661459, respectively (National Center for Biotechnology Information).  

 

Expression of the HE protein 

We expressed the HE protein of the Aichi strain in HEK 293T cells. The Aichi strain 

propagated in cell culture possessed a truncated (Trc-HE) HE gene (Aichi-TC), while the 

Aichi strain with the full-length (FL-HE) HE gene (Aichi-LIC) produced by site-directed 

mutagenesis was reported previously (Shimabukuro et al., 2013). We also expressed the HE 

gene with a C terminal HA tag. These genes were cloned into the pCAGGS expression 

vector and the vectors were transfected with TransIT
®
 293 (Mirus, Tokyo, Japan), as 

previously described (Shimabukuro et al., 2013). 

 

Detection of HE protein by indirect immunofluorescence (IIF) 

HRT-18 cells cultured in 24-well plates were infected with the Nig-3-3 (HE+) and 

Nig-3-8 (HE-) strains at an MOI of 0.05. To stain the intracellular proteins, infected HRT-

18 cells were fixed 18 h pi with 4% paraformaldehyde for 30 min at room temperature and 

permeabilized with 0.1% Triton X-100 for 20 min at room temperature. Cells were 

incubated with mouse anti-HE, anti-S, and anti-M antiserum for 2 h at room temperature. 

After two washes with PBS, cells were incubated with fluorescence isothiocyanate (FITC)-

conjugated goat anti-mouse IgG (Life Technologies, Eugene, OR, USA) for 2 h at room 

temperature (Ujike et al., 2016). 
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Growth kinetics of Nig-3-3 (HE+) and Nig-3-8 (HE-) in HRT-18 cells 

HRT-18 cells in 24-well plates at 80–90% confluence were washed once with 

DMEM and infected with Nig-3-3 and Nig-3-8 at a multiplicity of infection (MOI) of 0.05. 

After 1 h adsorption at 37°C, viral inoculums were removed, cells were washed with 

DMEM, and 0.5 mL DMEM was added. Viruses in the supernatant were collected at 

specified intervals and the supernatant was clarified by centrifugation at 5,000 rpm for 5 

min at 4°C. Virus titers in the culture media were determined in a 96-well plate by TCID50, 

as previously described (Reed and Muench, 1938). 

 

Effect of HE protein on the growth of Sindbis virus 

HEK 293T cells cultured in 24-well plates were transfected with the pCAGGS 

expression vector harboring the FL-HE (LIC) and Trc-HE (TC) genes of the Aichi strain at 

1 µg/well by TransIT
®
 293. After 48 h of transfection, HEK 293T cells were infected with 

the Sindbis virus at an MOI of 0.05. The virus titers were determined 36 h pi in 96-well 

plates by TCID50 using Vero cells.  

 

Statistical analysis 

Statistical analysis was performed using SPSS software (ver. 11.5; SPSS Inc., 

Chicago, IL, USA). The replication of Nig-3-3 (HE+) and Nig-3-8 (HE-) in HRT-18 cells 

was analyzed with Student’s t test. Differences were considered to be statistically 

significant at p < 0.05. 
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2-3. Results 

Virus isolation and comparison of HE amino acid sequences 

Virus inoculums were prepared from the diarrheal specimens Nig-2 and Nig-3 and 

spinoculated into HRT-18 cells. The CPEs, characterized by the aggregation and 

enlargement of cells, were observed 3–4 days later, and the cells eventually detached from 

the plastic surface. There was no difference in the CPEs between Nig-2 and Nig-3 (Fig. 2-

1). RT-PCR analysis of the S and HE genes indicated that both the cells and the supernatant 

were positive for BToV (data not shown). A mixture of the supernatant and the cells was 

inoculated in newly prepared HRT-18 cells. Virus passages were repeated 15 times and the 

viruses collected at each passage were examined for the presence of HE by amplification of 

the HE gene, as described in the materials and methods. 

The nucleotide sequences of the RT-PCR products from the isolates of the different 

passages revealed that the Nig-3 strain contained the FL-HE gene even after seven passages. 

At the eighth passage, a mutation in nucleotide 327 arose in the HE gene of Nig-3, creating 

a stop codon in the 109th amino acid (Fig. 2-2a), upstream of the transmembrane domain of 

the HE gene. Thus, the resulting HE protein of Nig-3-8 is not incorporated into virions but 

becomes truncated and soluble (Fig. 2-2b). On the other hand, the Nig-2 strain contained 

the FL-HE gene even after 15 passages in HRT-18 cells. The Aichi (TC) strain was 

passaged more than eight times through HRT-18 cells and acquired a stop codon at amino 

acid 161 (Shimabukuro et al., 2013). The HE gene of Aichi (LIC) was produced by site-

directed mutagenesis of the Aichi (TC) HE gene and consists of the FL-HE sequence 

(Shimabukuro et al., 2013), as depicted in Fig. 2-2.  
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Detection of BToV proteins in infected cells 

We were unsuccessful in our attempts to produce antibodies for Western blotting 

analysis against the S, M, or HE proteins; however, we were able to visualize the proteins 

with IIF. Thus, we examined whether the S, M, or HE proteins were expressed with IIF. 

HRT-18 cells infected with the Nig-3-3 (HE+) and Nig-3-8 (HE-) strains were probed with 

anti-HE, anti-S, and anti-M serum to detect expression of the HE, S, and M proteins, 

respectively, at 18 h pi. Both the S and M proteins of Nig-3-3 and Nig-3-8 were detected 

within the cells (Fig. 2-3b and c). The HE protein of Nig-3-3 was detected in the cells (Fig. 

2-3a), while there was no HE staining in Nig-3-8-infected HRT-18 cells (Fig. 2-3a). These 

results suggest that the Trc-HE protein was not expressed, or if it was expressed, the 

antibody failed to detect the protein. It is currently unknown why the Trc-HE protein could 

not be detected in infected cells.  

 

Comparison of the growth of Nig-3-3 (HE+) with Nig-3-8 (HE-) in HRT-18 cells 

We cloned Nig-3-3 (HE+) (third passage) and Nig-3-8 (HE-) (eighth passage) with 

the limiting dilution method and used these viruses for further experiments. To compare 

their growth, HRT-18 cells cultured in 24-well plates were infected with the viruses at an 

MOI of 0.05 and the growth kinetics were examined. As shown in Fig. 2-4, Nig-3-8 (HE-) 

grew more efficiently than Nig-3-3 (HE+): the infectious titer of Nig-3-8 (HE-) was 

approximately 10- to 20-fold higher than that of Nig-3-3 (HE+). This result clearly 

demonstrated that Nig-3-8 (HE-) grew more efficiently than Nig-3-3 (HE+), suggesting that 

the presence of the HE protein inhibits BToV growth in cultured cells.  
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Effect of HE protein on the growth of Sindbis virus 

We examined whether HE expressed in HEK 293T cells influences infection of the 

Sindbis virus. We expressed the FL-HE (LIC) and Trc-HE (TC) protein of Aichi strain by 

transfection. As shown in Fig. 2-5, Sindbis virus infection was suppressed by the expressed 

FL-HE protein, consistent with the result that BToV with the full length HE gene grows 

less efficiently in HRT-18 cells than BToV with the Trc-HE gene (Fig. 2-4). The HE 

protein may negatively impact virus infection in general, since this result was evident with 

infection of BToV and Sindbis viruses unrelated to BToV. 

 

2-4. Discussion 

Although BToV infection is not frequently encountered in the clinical field, it is 

considered an important etiological agent because it causes diarrhea and decreases milk 

production in adult cattle. Moreover, seroconversion to BToV has been observed in adult 

cows showing winter diarrhea (Hoet et al., 2003; Ito et al., 2007; Koopmans et al., 1991, 

1989).  

HE proteins are retained not only in ToV, but also in some of the beta-CoVs (de 

Groot, 2006). The equine ToV BEV strain was the first to be isolated and its ability to grow 

in tissue culture has been reported. This virus does not have an HE protein, but contains a 

sequence similar to the HE gene. The loss of the HE protein in BEV is thought to be the 

result of mutation during the passage of cultured cells (Cornelissen et al., 1997; Snijder et 

al., 1991), similar to the events that occurred in BToVs (Aita et al., 2012; Ito et al., 2010). 

BToV was recently isolated in cultured HRT-18 cells, most of which had lost the HE 

protein after multiple passages, however, a few viruses contained the HE protein even after 
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several passages (Aita et al., 2012; Ito et al., 2010). In the present study, we compared 

BToVs with and without the HE protein to clarify its biological function.  

With the use of HRT-18 cells, BToV can be isolated and maintained (Aita et al., 

2012; Ito et al., 2010; Kuwabara et al., 2007; Shimabukuro et al., 2013). Among the 

isolates, Nig-2 retained the HE protein even after 15 passages in HRT-18 cells, while Nig-3 

and Aichi lost HE after 6–8 passages (Aita et al., 2012). These short and soluble HE 

proteins were not detected by IIF, possibly because of the lack of antibodies against HE. 

Since we were able to obtain the virus Nig-3 with HE after three passages (Nig-3-3) and 

that without HE after eight passages (Nig-3-8), we compared these viruses in terms of their 

ability to replicate in cultured cells and their resistance to IFN. We assumed that HE plays 

an important role in viral replication in animals, since all of the BToVs isolated from 

clinical diarrheic specimens contained the FL-HE gene.  

Our present study showed that the Nig-3-8 virus without the HE protein multiplied 

more efficiently in cultured cells than Nig-3-3 with HE. This may indicate that HE 

negatively impacts BToV infection in HRT-18 cells. This effect of HE was also observed 

with infection of the unrelated Sindbis virus: HEK 293T cells expressing the HE protein 

decreased infection of the Sindbis virus (Fig. 2-5). It has also been reported that the HE-

deficient mouse hepatitis virus (MHV) grew more efficiently than the HE-positive virus 

(Lissenberg et al., 2005). These results suggest that HE has an inhibitory effect on the 

replication of various viruses in cultured cells.  
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2-5. Conclusion 

The function of HE protein of BToV has not yet been understood. In this chapter, 

comparison of HE+ and HE- strains was carried out in terms of replication in cultured cells. 

HE- virus grew more efficiently than HE+ one, which suggested that HE has some adverse 

effect on the virus growth. This is in good agreement with the finding that HE negative 

viruses are selected after repeated passages in cultured cells.  
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Figure 2-1: The cytopathic effects (CPEs) of newly isolated bovine toroviruses (BToVs) in 

human rectal tumor-18 (HRT-18) cells. (a) Niigata-2 (Nig-2) 72 h after inoculation, (b) 

Niigata-3 (Nig-3) 96 h post-infection (pi), and (c) mock-infected HRT-18 cells.  
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Figure 2-2: Amino acid comparison of various BToV hemagglutinin-esterase (HE) 

proteins. (a) Comparison of amino acid sequences of HE proteins of the Aichi strain with 

the full-length (FL-HE) HE gene (Aichi-LIC) and truncated (Trc-HE) HE gene (Aichi-TC), 

as well as the HE sequences from the Nig-2-8, Nig-3-3, and Nig-3-8 virus strains. Nig-3-8 

and Aichi (TC) have a truncated HE protein due to the stop codon indicated by the circles. 

(b) Schematic diagram of each HE protein. Nig-2-8 and Nig-3-3 contains the FL-HE 

protein, while the others have the Trc-HE protein due to the stop codon that arose during 
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passage in HRT-18 cells. Aichi (LIC) indicates the FL-HE protein, which was produced by 

site-directed mutagenesis from Aichi (TC).  
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Figure 2-3: Detection of the HE, membrane (M), and spike (S) proteins of the Nig-3-3 and 

Nig-3-8 strains by indirect immunofluorescence (IIF). HRT-18 cells prepared in 24-well 

plates were infected with Nig-3-3 (HE+) and Nig-3-8 (HE-) strains at an MOI of 0.05 and 

examined for the presence of each protein 18 h pi. Infected cells were stained with mouse 

antibodies raised against each protein and fluorescein isothiocyanate (FITC)-conjugated 

anti-mouse goat serum. (a) anti-HE, (b) anti-M, and (c) anti-S antibodies.  
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Figure 2-4: Comparison of the growth of the Nig-3-3 strain with the HE protein (HE+) 

with the Nig-3-8 strain without HE (HE-) in HRT-18 cells. HRT-18 cells in 24-well plates 

were infected with the viruses at an MOI of 0.05. At the indicated intervals, the culture 

supernatants of the infected cells were isolated and virus titers were determined by TCID50. 

p values were determined with Student’s t test. Significant differences are indicated with 

one (p < 0.05), two (p < 0.01), or three asterisks (p < 0.001). 
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Figure 2-5: Comparison of growth of the Sindbis virus in HEK 293T cells expressing the 

FL-HE or Trc-HE protein. HEK 293T cells transfected with FL-HE and Trc-HE genes, 

were infected with the Sindbis virus and infection was monitored for 24–72 h. 
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Chapter-3 

 

Anti-IFN activity of HE protein of BToV 
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3-1. Introduction 

Innate immunity is the first step of animal defense mechanism after viral infection. 

As a first step following viral infection, the host defense system secretes type I IFNs, IFN-α, 

and IFN-β as anti-viral factors (Goodbourn et al., 2000; Gotoh et al., 2002, 2001; Huang et 

al., 2003). The response to viral infection consists of an innate, or nonspecific component, 

and an adaptive, or specific defense. The innate response is considered the first line of 

immune defense. Generally, CoVs contain a number of structural and nonstructural proteins 

that act as IFN antagonists to overcome the host defense mechanism. Protein 7a of feline 

infectious peritonitis virus, protein 5a of MHV, nsp1 of severe acute respiratory syndrome, 

N protein of MHV, nsp2 of infectious bronchitis virus, and protein 7 of transmissible 

gastroenteritis virus have been reported to act as IFN antagonists (Cruz et al., 2011; 

Dedeurwaerder et al., 2014; Kamitani et al., 2006; Koetzner et al., 2010; Wang et al., 2009; 

Ye et al., 2007). However, there is no information is available for the IFN antagonism of 

any protein of BToV. 

Previous findings suggested that, HE protein is an obstacle for virus replication in 

cultured cells; however, HE must have some importance for viral pathogenesis in host 

animals. In the present study, we have explored that HE protein works as an IFN-α 

antagonist, which may explain why the original isolates of BToV contained the full length 

HE protein. 
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3-2. Materials and Methods 

In situ acetylesterase assay 

Subconfluent monolayers of HRT-18 cells grown in 24-well plates were infected with 

the Nig-3-3, Nig-3-8, and Aichi strains (TC) of BToV. At 24 h pi, the cells were fixed with 

citrate-acetone-formaldehyde, stained for acetylesterase activity with a α-naphthyl acetate 

esterase detection kit (Sigma-Aldrich, MO, USA) according to the manufacturer’s 

instructions, and examined by phase-contrast microscopy. HEK 293T cells transfected with 

the FL-HE gene of Nig-2-8, the Aichi strain (LIC), and the Trc-HE gene of the Aichi strain 

(TC) of BToV using TransIT
®

 293 were examined to detect acetylesterase activity. After 

48 h of transfection, HEK 293T cells were stained to detect acetylesterase activity of the 

HE protein with the same kit.  

 

Detection of HE protein by Western blotting 

Subconfluent HEK 293T cells cultured in 24-well plates were transfected with the 

pCAGGS vector harboring the FL-HE gene of the Aichi strain (LIC), the Trc-HE gene of 

the Aichi strain (TC), the FL-HE gene of the Aichi (LIC) strain tagged with HA (FL-

HE+HA), and the Trc-HE gene of Aichi (TC) tagged with HA (Trc-HE+HA). Mock 

transfection was done with solution containing no vector. After 48 h of transfection, cell 

lysates were analyzed with an anti-HA antibody (mouse monoclonal antibody [MAb] clone 

12CA5; Boehringer, Mannheim, Germany) (Taguchi and Matsuyama, 2002) and anti-

mouse IgG conjugated with horseradish peroxidase (Rockland, Gilbertsville, PA, USA), as 

described previously (Ujike et al., 2016). Protein bands were visualized with enhanced 
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chemiluminescence prime Western blotting detection reagent (GE Healthcare, Tokyo, 

Japan) with an LAS-4000 imager (Fujifilm, Tokyo, Japan).   

 

IFN sensitivity assay 

The relative sensitivity of the various BToVs to exogenously added human IFN-α 

(hIFN-α) and hIFN-β was measured in HRT-18 cells. Briefly, cells cultured in 24-well 

plates to 80–90% confluence were incubated with hIFN-α and hIFN-β at various 

concentrations. After 24 h of incubation at 37°C, HRT-18 cells were infected with various 

BToVs at an MOI of 0.05 and incubated in DMEM containing IFN for another 36 h at 

37°C. Virus titers in the supernatant were determined by TCID50. The Sindbis virus was 

used as an IFN-sensitive control virus.  

    

Effect of IFN on Sindbis virus infection in HE protein expressing HEK 293T cells 

HEK 293T cells cultured in 24-well plates were transfected with the pCAGGS 

expression vector harboring the FL-HE (LIC) and Trc-HE (TC), FL-HE+HA, and Trc-

HE+HA genes of Aichi strain at 1µg/well by TransIT
®

 293. Mock transfection was done 

with solution containing no vector. After 48 h of transfection, HEK 293T cells were treated 

with IFNs for 24 h, or not treated, and infected with the Sindbis virus at an MOI of 0.05. 

The virus titers were determined 36 h pi in 96-well plates by TCID50 using Vero cells to 

determine the IFN effect.  

          To quantify the amount of mRNA for IFN, we performed real-time PCR. HEK 293T 

cells cultured in 24-well plates were transfected with pCAGGS expression vector harboring 

the FL-HE (LIC) and Trc-HE (TC) genes of the Aichi strain using TransIT
®
 293. Mock 
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transfection was performed with solution containing no vector. Then, 48 h after transfection, 

the cells were directly lysed with TRI Reagent (Zymo Research, CA, USA) at 300 μl/well 

and tRNA (Roche Diagnostics GmbH, Mannheim, Germany) was added at 30 μl (5 μg/ml) 

per well. Then the samples were incubated for 5 min at room temperature. Chloroform was 

added (60 μl), and the samples were mixed vigorously, left for 5 min at room temperature, 

and spun at 12000 g for 10 min at 4°C. The aqueous phase was transferred to a fresh tube. 

Then, 150 μl isopropanol was added for 5 min and samples were spun at 12000 g for 8 min 

at 4°C. The white RNA pellet was washed with 300 μl 75% ethanol and treated with DNase 

I (Takara Bio Inc., Shiga, Japan) to remove any contaminating DNA according to the 

manufacturer’s instructions. The absence of contaminating DNA was confirmed in control 

experiments in which the reverse transcriptase enzyme was omitted. 

            The levels of hIFN-α mRNA expression in transfected cells were quantified using a 

StepOnePlus
TM

 Real Time PCR system (Applied Biosystems, Foster City, CA, USA) and 

analyzed with StepOne
TM

 Software v2.3. A Thunderbird
®
 SYBR

®
 qPCR mix kit (Toyobo, 

Osaka, Japan) was used for real-time monitoring of amplification in accordance with the 

manufacturer’s instructions. Each reaction was performed in triplicate. The relative mRNA 

levels were normalized relative to GAPDH. The primer sequences were as follows: IFN-α 

forward (5’ GACTCCATCTTGGCTGTGA 3’), IFN-α reverse (5’ 

TGATTTCTGCTCTGACAACCT 3’), GAPDH forward (5’ 

GAGTCAACGGATTTGGTCGT 3’) GAPDH reverse (5’ 

GACAAGCTTCCCGTTCTCAG 3’) (Colantonio et al., 2011). PCR conditions were as 

follows: denaturation at 95°C for 1 min followed by 40 cycles of 95°C for 15 s and 60°C 
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for 45 s. A standard curve for RT products was generated with twofold serial dilutions of 

cDNA prepared from plasmid-transfected HEK 293T cells. 

 

Statistical analysis 

Statistical analysis was performed using SPSS software (ver. 11.5; SPSS Inc., 

Chicago, IL, USA). The IFN sensitivity of Nig-3-3, Nig-3-8, Nig-2-8, Aichi and Sindbis 

virus were calculated by one-way analysis of variance (ANOVA). Differences were 

considered to be statistically significant at p < 0.05. 

 

3-3. Results 

Esterase activity of the HE proteins 

To examine whether HE retains esterase activity, the Nig-3-3 strain with FL-HE, as 

well as the Nig-3-8 and Aichi strains with the Trc-HE protein, were tested for 

acetylesterase activity with the substrate α-naphthyl acetate 24 h pi. Esterase activity, as 

demonstrated by widespread distribution of garnet-colored cells, was observed in Nig-3-3-

infected HRT-18 cells but not in Nig-3-8- and Aichi (TC)-infected cells, as well as mock-

infected cells (Fig. 3-1a). We further examined whether the esterase activity of the virus 

was a result of the HE protein. HEK 293T cells transfected with FL-HE from Nig-2-8 or 

Aichi-LIC, or Trc-HE from Aichi-TC were tested for esterase activity. The presence of 

garnet-colored cells indicated esterase activity in FL-HE expressing HEK 293T cells but 

not in cells transfected with the Trc-HE gene or mock-transfected HEK 293T cells (Fig. 3-

1b). These results strongly suggest that the FL-HE protein from Nig-3-3 retained esterase 

activity, but that the esterase activity of the Trc-HE protein was lost. 
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Effect of IFN on Nig-3-3 (HE+) and Nig-3-8 (HE-) replication 

Although the HE protein may hinder viral growth in cultured cells, the HE protein 

likely has an important biological function for viral growth in animals and possibly for viral 

pathogenesis in the host, since specimens isolated from diseased cattle contain the virus 

with the HE protein. One possibility is that the HE protein provides anti-innate immunity, 

which has been proven in a number of virus-encoded proteins (Cruz et al., 2011; 

Dedeurwaerder et al., 2014; Kamitani et al., 2006; Koetzner et al., 2010; Wang et al., 2009; 

Ye et al., 2007). We examined whether HE affects viral resistance to IFN, which was 

evaluated by investigating the effect of hIFN-α on Nig-3-3 and Nig-3-8 growth in HRT-18 

cells. The Sindbis virus was used as an IFN-sensitive control virus. HRT-18 cells were 

infected with the three viruses at an MOI of 0.05 and virus growth was compared in the 

presence or absence of IFN-α. Although no significant virus reduction was detected with 

Nig-3-3 infection, there was a significant reduction of Nig-3-8 infection 36 h pi. Following 

treatment with 10 and 100 IU/ml IFN-α, we observed a statistically significant decrease in 

infection compared with the infection in the absence of IFN (p < 0.05 and p < 0.01 with 10 

and 100 IU/ml, respectively) (Fig. 3-2a). Furthermore, we examined the effect of 100 IU/ml 

of IFN on virus infection at 12, 24, and 36 h pi. As shown in Fig. 3-2b, the titer of Nig-3-8 

was significantly reduced (p < 0.05), though no significant difference was observed in Nig-

3-3-infected cells. These results indicated again that Nig-3-8 is sensitive to IFN-α, while 

Nig-3-3 is not. In both experiments, infection with the Sindbis virus was drastically 

suppressed by IFN treatment, consistent with previous reports (Overall et al., 1980; 

Petrillo-Peixoto et al., 1980; Ryman et al., 2000). These findings suggest that HE functions 
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as an IFN antagonist. To confirm this, we examined the anti-IFN-α activity of the Aichi 

(HE-) and Nig-2 (HE+) BToV strains. Anti-IFN activity of these viruses was examined 

using the same procedure as for Nig-3-3 and Nig-3-8. As shown in Fig. 3-2c, the infection 

of Nig-2-8 (HE+) was not reduced by IFN-α treatment, but Aichi (HE-) infection was 

significantly suppressed at 10 and 100 IU/ml IFN-α (p < 0.05 and p < 0.01, respectively). 

These findings strengthen the notion that HE is involved in anti-IFN-α activity. 

To examine the effect of IFN-β on Nig-3-3 and Nig-3-8 infection, HRT-18 cells were 

treated with various concentrations of IFN-β and infected with Nig-3-3 (HE+) or Nig-3-8 

(HE-), similar to the IFN-α experiment. IFN-β treatment had no significant anti-viral effect 

on Nig-3-3 or Nig-3-8 infection, whereas there was a significant (p < 0.05) reduction in the 

replication of the Sindbis virus following IFN-β treatment (Fig. 3-2d). These results suggest 

that HE works as an IFN-α antagonist, and IFN-β failed to suppress the growth of both 

HE+ and HE- viruses. 

 

Effect of HE expression on the anti-viral effect of IFN 

We examined whether HE functions as an IFN-α antagonist using the Sindbis virus. 

We expressed the FL-HE and Trc-HE protein of Aichi with or without the HA tag by 

transfection and HE expression was confirmed by Western blotting (Fig. 3-3a). We 

detected the expected protein bands of FL-HE+HA and Trc-HE+HA with the anti-HA 

antibody. The molecular weights of FL-HE+HA and Trc-HE+HA were approximately 55 

kDa and 20 kDa, respectively. We failed to detect the FL-HE and Trc-HE proteins without 

the HA tag because HE-specific antibodies are not currently available. Then we examined 

the effect of IFN-α on the growth of the Sindbis virus in HEK 293T cells expressing FL-HE, 
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Trc-HE protein, and also in mock transfected cells by comparing virus titers in the culture 

media 36 h pi. We found that infection with the Sindbis virus was not reduced by IFN-α 

treatment when FL-HE was expressed, while it was reduced when Trc-HE was expressed 

and also in mock transfected cells (Fig. 3-3b). These results clearly indicate that HE 

functions as an IFN-α antagonist.  

            As shown in Fig. 3-3b, IFN-α suppressed Sindbis virus infection in HEK 293T cells 

expressing Trc-HE but not in FL-HE-expressing cells, suggesting that HE is an IFN-α 

antagonist. However, it was also possible that HEK 293T cells transfected with a vector 

harboring FL-HE (LIC) produced higher levels of IFN-α than those transfected with a 

vector containing Trc-HE (TC) and the cells expressing higher levels of IFN might be less 

responsive to extrinsic IFN treatment. Therefore, we measured the amount of IFN-α in the 

supernatants of FL-HE, Trc-HE, and mock-transfected HEK 293T cells using an IFN-α 

bioassay with Sindbis virus. However, we did not detect any IFN activity in the culture 

fluids of transfected cells (data not shown). Next, we compared the IFN-α mRNA levels 

among the cells described above. We transfected HEK 293T cells with pCAGGS 

expression vector harboring the FL-HE (LIC) or Trc-HE (TC) gene of the Aichi strain and 

mock transfectants. Forty-eight hours later, we examined the levels of IFN-α mRNA by 

real-time PCR. There were no significant differences among cells transfected with vector 

containing FL-HE or Trc-HE (Fig. 3-3c). However, the level of IFN-α mRNA was six fold 

higher in transfected cells than in mock-transfected control cells (Fig. 3-3c). These results 

suggest that the anti-IFN activity triggered by transfection with a vector containing the FL-

HE gene was not due to the higher level of IFN produced as a result of transfection but 

rather was more likely due to the anti-IFN activity of HE protein expressed by transfection. 
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The slightly higher replication of Sindbis virus in mock-transfected cells compared to cells 

transfected with vectors containing the HE gene with or without IFN-α treatment (Fig. 3-

3b) was likely due to the lower level of IFN-α production in mock-transfected cells as 

shown in Fig. 3-3c. 

 

3-4. Discussion 

The FL-HE protein derived from Nig-3-3 and the Aichi (LIC) manipulated gene 

exhibited esterase activity in infected cells; however, esterase activity was not detected in 

cells infected with BToV with Trc-HE (Nig-3-8 and Aichi strains-TC). Since the active site 

for esterase is located in amino acids 38–142 and 285–350 of the HE protein (Langereis et 

al., 2009), the HE proteins produced from the Trc-HE genes are soluble and do not contain 

all of the active regions and may lack esterase activity. These short and soluble HE proteins 

were not detected by IIF, possibly because of the lack of antibodies against HE with the C-

terminal deletion. Expression of FL-HE and Trc-HE with the HA tag were successfully 

recognized by Western blot with the anti-HA antibody.  

Innate immunity is the first reaction of the animal defense mechanism following viral 

infection. CoVs encode a number of structural and nonstructural proteins within their 

genome that act as IFN antagonists (Cruz et al., 2011; Dedeurwaerder et al., 2014; 

Kamitani et al., 2006; Koetzner et al., 2010; Wang et al., 2009; Ye et al., 2007). In the 

present study, we examined the sensitivity of the Nig-3-3 and Nig-3-8 virus strains to IFN 

and found that Nig-3-3 was more resistant to IFN-α than Nig-3-8, but IFN-β did not reduce 

the infection of either viruses, suggesting that HE functions as an IFN-α antagonist. Anti-

IFN activity of HE is also supported by the observation that infection of Nig-2 with HE is 
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not affected by IFN-α, but infection with the Aichi virus without HE is reduced by IFN-α 

treatment. 

The IFN resistance of each virus may be affected by proteins other than HE, since the 

viruses used in the IFN experiments may have different backgrounds outside the HE gene. 

Thus, we examined HE expression and found that HEK 293T cells expressing HE exhibited 

similar Sindbis virus infection in the presence and absence of IFN-α, while virus growth 

was suppressed in HE-negative HEK 293T cells. These results strongly suggest that the HE 

protein is responsible for the anti-IFN activity of BToVs.  

Most of the viral proteins that exhibit anti-IFN activity are not membrane proteins 

(Cruz et al., 2011; Dedeurwaerder et al., 2014; Kamitani et al., 2006; Koetzner et al., 2010; 

Wang et al., 2009; Ye et al., 2007). However, some membrane proteins, such as the M 

protein of Middle East respiratory syndrome coronavirus (Yang et al., 2013) and NS4B 

protein of flaviviruses, predicted to be a membrane protein, also act as IFN antagonists 

(Muñoz-jordán et al., 2005). This suggests that membrane proteins such as HE may 

function as anti-IFN factors through mechanisms other than non-membrane proteins. 

Ongoing studies are evaluating how HE functions as an anti-IFN factor, which could 

elucidate a new pathway for IFN-mediated resistance.  

Our results show that HE functions as an IFN antagonist, and this is in agreement 

with the observation that the HE protein exists in viruses in clinical specimens, but is lost 

after passage in cell culture. IFN is an important mediator of innate immunity following 

virus infection in animals and acute infection normally produces high levels of IFN. 

However, the amount of IFN in HRT-18 cells infected with BToV is below the detection 

level (data not shown). 
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3-5. Conclusion 

It was demonstrated in the chapter 2 that the HE protein has a negative effect on 

BToV growth in cell culture. In this chapter, studies were performed whether HE has 

something to do with the innate immunity, since BToVs isolated from clinical specimens 

always retain HE, suggesting that HE is essential for growth of the virus in animals. It was 

shown in this chapter that, HE protein acts as an IFN-α antagonist in innate immunity, 

strongly suggesting that HE plays an important role in the pathogenesis of BToV infection.  
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Figure 3-1: Esterase activity of BoTV HE proteins. (a) HRT-18 cells infected with Nig-3-3, 

Nig-3-8, or the Aichi (TC) strain were tested for acetylesterase activity with the substrate α-

naphthyl acetate. Mock-infected cells were used as a negative control. (b) Human 

embryonic kidney 293T (HEK 293T) cells transfected with Nig-2-8, Aichi (LIC), or Aichi 

(TC) HE gene were tested for acetylesterase activity, as described above. Mock-transfected 

cells were used as a negative control.  

 

 

 

 

 

 

 

 



63 

 

 

  (a)                                                                     (b)  

 

 

 

 

 

          

  (c)                                                                             (d) 

 

 

 

 

 

 

Figure 3-2: Effect of interferon (IFN)-α on the infection of Nig-3-3 (HE+) and Nig-3-8 

(HE-). (a) HRT-18 cells in 24-well plates were incubated with human IFN-α (hIFN-α) at 0 

IU, 10 IU and 100 IU/ml and incubated at 37°C for 24 h. The cells were infected with Nig-

3-3 (HE+), Nig-3-8 (HE-), or the Sindbis virus at an MOI of 0.05 and virus titers in the 

culture media were examined 36 h pi. (b) HRT-18 cells were treated with 100 IU/ml hIFN-

α for 24 h and infected with the Nig-3-3, Nig-3-8, or Sindbis viruses. Virus titers in the 

culture media were examined at 12, 24, and 36 h pi. (c) HRT-18 cells were treated with 0, 

10, and 100 IU/ml hIFN-α for 24 h and infected with the Nig-2-8 (HE+), Aichi (HE-), or 

Sindbis viruses. Virus titers in the culture media were examined 36 h pi. (d) HRT-18 cells 

in 24-well plates were incubated with hIFN-β of various concentrations and infected with 

BToVs, as well as the Sindbis virus. Virus titers were examined 24 h pi. Titers are 



64 

 

expressed as the mean ± standard deviation (SD) of four replicates. p values were 

calculated by one-way ANOVA. Significant differences are indicated with one (p < 0.05), 

two (p < 0.01), or three asterisks (p < 0.001).  
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Figure 3-3: Effect of HE expression in HEK 293T cells on hIFN-α activity. (a) Western 

blot analysis of HE in HEK 293T cells transfected with FL-HE, Trc-HE, FL-HE+HA, and 

Trc-HE+HA genes, as well as mock transfection with solution containing no vector. 

Proteins were detected with anti-HE and anti-HA antibodies. (b) Effect of different 

concentrations of hIFN-α on Sindbis virus infection. HEK 293T cells transfected with FL-

HE, Trc-HE, FL-HE+HA, Trc-HE+HA, and mock were treated with hIFN-α at 0, 10, and 

(a) 

(b) (c) 
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100 IU/ml. After 24 h, the cells were infected with the Sindbis virus and virus titers in the 

culture media 36 h pi were determined using Vero cells. Mock transfection was done with 

solution containing no vector. (c) Quantification of mRNA expression levels of hIFN-α in 

transfected cells. HEK 293T cells were transfected with expression vector harboring FL-HE 

and Trc-HE genes. Mock transfection was done with solution containing no vector. Titers 

are expressed as the mean ± SD of three replicates. Significant differences are indicated 

with one (p < 0.05), two (p < 0.01), or three asterisks (p < 0.001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



67 

 

Summary 

Coronaviruses (CoVs) cause a wide range of diseases in farm and domestic animals, 

some of which are a threat to the farming industry and has serious effect on the economy. 

Economically important CoVs of farm animals include porcine epidemic diarrhea virus 

(PEDV), transmissible gastroenteritis virus (TGEV), bovine torovirus (BToV) and bovine 

coronavirus (BCoV), which result in enteric infection causing diarrhea in young animals. In 

2013, a huge porcine epidemic diarrhea (PED) outbreak has occurred in Japan after a 

period of 7 years without any outbreak, which causes high morbidity and mortality in 

young piglets. On the other hand, BToV causes mild to moderate diarrhea in claves. BToV 

with the full length hemagglutinin-esterase (HE) gene was always isolated from diarrheal 

feces; however, the viruses lost the HE protein as a result of mutation of the HE gene 

following several passages in cultured cells. These findings suggest that the HE protein is 

important for replication and pathogenesis in animals, but is not essential for replication in 

cell culture. In the present study, phylogenetic and antigenic characterization of newly 

isolated PEDV in Japan is described. On the other hand, biological characterization of the 

HE protein of BToV focusing on anti-interferon (IFN) activity is examined.  

 

1. Phylogenetic and antigenic characterization of newly isolated PEDV in Japan 

PEDV causes severe diarrhea and dehydration, which usually lead to high morbidity 

and mortality, especially in piglets. Though vaccination program has been performed in pig 

farms throughout the whole Japan, PED has re-emerged. In the first chapter, we describe 

the isolation of new PEDV strains from recent outbreaks in Japan and the phylogenetic 

relatedness of the newly isolated strains with PEDVs circulating worldwide. Furthermore, 

https://en.wikipedia.org/wiki/Diarrhea
https://en.wikipedia.org/wiki/Diarrhea
https://en.wikipedia.org/wiki/Dehydration
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we attempted to reveal the antigenic relationship among the new strains and vaccine strain. 

To evaluate the mechanism by which a large outbreak of PED occurred in Japan, where the 

majority of sows are vaccinated, we isolated two new strains of PEDV from the intestines 

of piglets and found that they are more similar to US isolates (group II PEDV) than to the 

Japanese vaccine strain (group I PEDV). We compared the antigenicity of the vaccine type 

strain and newly isolated strains by means of a neutralization test using sera from a number 

of pigs from various farms; the results revealed that they are antigenically similar. This is 

the first report of the similarity of group I and II viruses using sera from individual pigs 

vaccinated with group I virus. These data suggest that the large outbreak of PED in Japan 

may not be attributed to inefficient vaccination but may be due to the extremely high 

virulence of the newly appearing viruses. It was also suggested in the literature that the 

poor biosecurity is one of the major causes of huge PED outbreak worldwide. 

 

2. Biological characterization of the HE protein of BToV  

BToV, which causes diarrhea in calves, contains the HE protein on the viral 

envelope when isolated from the host, although HE is often lost from the virion after 

multiple passages in cultured cells. This suggests that HE protein may be important for 

replication or pathogenesis in infected animals, but is not indispensable for the replication 

in cultured cells. In the second chapter, we explored the biological functions of the HE 

protein. We isolated the BToV Niigata-3 (Nig-3) from diarrheal specimen of the cattle. 

Nig-3-3 with HE (HE+) from the viruses with 3rd passage level and Nig-3-8 without HE 

(HE-) at 8th passage level were obtained by cloning using human rectal tumor (HRT-18) 

cells. The mutation has arisen in the HE gene of Nig-3, which makes a stop codon at the 
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amino acid number 109 of HE gene. We cloned Nig-3-3 and Nig-3-8 using HRT-18 cells 

and compared their growth in cultured cells. Nig-3-8 (HE-) grew more efficiently than Nig-

3-3 (HE+), suggesting the possibility that HE inhibits BToV growth in cultured cells. 

Human embryonic kidney 293T (HEK 293T) cells expressing the HE protein also 

suppressed the infection of the Sindbis virus. These results suggest that HE protein is an 

obstacle for the growth of various viruses in cultured cells. 

 

3. Anti-IFN activity of HE protein of BToV 

In the previous chapter, it was revealed that HE protein is not essential for the 

replication but is an obstacle for virus replication in cultured cells. Although the HE protein 

may hinder viral growth in cultured cells, the HE protein likely has an important biological 

function for viral growth in animals and possibly for viral pathogenesis in the host, since 

specimens isolated from diseased cattle contain the virus with the HE protein. In this 

chapter, we explored the anti-IFN activity of the HE protein of BToV using IFN-α and 

IFN-β on the growth of HE+ and HE- viruses. IFN-α depressed the growth of HE- viruses, 

but not that of HE+ ones, whereas IFN-β has no influence on their growth. HE protein 

expressed in HEK 293T cells were examined whether it acts as IFN-α antagonist by using 

Sindbis virus. The infection of Sindbis virus in HEK 293T cells expressing HE protein was 

not affected by the IFN-α treatment, though the infection was depressed in cells expressing 

the truncated HE protein after treatment with IFN-α. This indicated that HE protein acts as 

an IFN-α antagonist. These results collectively suggest that HE plays an important role in 

the pathogenesis in BToV infections as an IFN antagonist to innate immunity.  
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As studied above, vaccination with group II virus strains as well as good biosecurity 

could assist to protect pigs from large outbreaks of PED. On the other hand, we found that 

HE protein suppresses BToV infection in cultured cells. More importantly, we showed that 

HE functions as an IFN antagonist, which indicates that HE is an important pathogenic 

factor for the infection in animals. The studies on two different CoVs causing enteric 

diseases shown in this thesis will contribute to the development of anti-viral strategies as 

well as delineation of the pathogenic mechanisms of the CoV infection. 
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Abbreviations 

 

                   BCoV: bovine coronavirus  

BToV: Bovine torovirus 

cDNA: Complimentary Deoxyribonucleic Acid                  

                   CoV: Coronavirus 

                   CoVs: Coronaviruses 

CPE: Cytopathic effect  

DMEM: Dulbecco’s modified Eagle’s medium                   

                   E: Envelope  

                   FCoV: Feline coronavirus  

FCS: Fetal calf serum                    

                   FECV: Feline enteric coronavirus  

                   FIPV: Feline Infectious Peritonitis virus  

FITC: Fluorescence isothiocyanate 

FL: Full length 

HE: Hemagglutinin-Esterase 

HEK: Human embryonic kidney 

HRT: Human Rectal Tumor 

                   IBV: infectious bronchitis virus  

                   IFN: Interferon 

IU: International Unit 

kb: Kilo base 

                   M: Membrane 
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MHV: Mouse hepatitis virus 

                   MHV: Mouse hepatitis virus  

MOI: Multiplicity of Infection 

                   N: Nucleocapsid 

Nig: Niigata 

nm: Nanometer 

PBS: Phosphate-buffered saline 

                  PBS: phosphate-buffered saline 

 PED:  Porcine epidemic diarrhea 

                   PEDV: Porcine epidemic diarrhea virus 

Pi: Post inoculation 

RT-PCR: reverse transcriptase polymerase chain reaction 

                   S: Spike 

                   TCID: Tissue culture infective dose        

                   TGEV: Transmissible gastroenteritis virus  

                  TPB: Tryptose phosphate broth 

Trc: Truncated 

                   US: United States 
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